Broad-spectrum bactericidal activity of Ag(2)O-doped bioactive glass.

نویسندگان

  • Maria Bellantone
  • Huw D Williams
  • Larry L Hench
چکیده

Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag(2)O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions, 45S5 Bioglass and BG, have been studied by using Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus as test microorganisms. Concentrations of AgBG in the range of 0.05 to 0.20 mg of AgBG per ml of culture medium were found to inhibit the growth of these bacteria. Not only was AgBG bacteriostatic, but it also elicited a rapid bactericidal action. A complete bactericidal effect was elicited within the first hours of incubation at AgBG concentrations of 10 mg ml(-1). 45S5 Bioglass and BG had no effect on bacterial growth or viability. The antibacterial action of AgBG is attributed exclusively to the leaching of Ag(+) ions from the glass matrix. Analytical measurements rule out any contribution to AgBG-mediated bacterial killing by changes in pH or ionic strength or the dissolution of other ionic species from the biomaterials. Our observations of the dissolution profiles of Ag(+) from AgBG in the presence and absence of bacteria are consistent with silver accumulation by the bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ag-doped TiO2 Nanocomposite Prepared by Sol Gel Method: Photocatalytic Bactericidal Under Visible Light and Characterization

In  this  reaserch,  photocatalyst  titanium  dioxide  was  doped  with silver  and modified  by  polyethylene  glycol  by  sol  gel method  and the  samples  were  characterized  by  X-ray  diffraction  (XRD)  and scanning  electron  microscopy  (SEM).  The  purpose  of  the  present study  was  to  evaluate  the  photocatalytic  bactericidal  effects  of prepared nanocomposite on human p...

متن کامل

Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bl...

متن کامل

Bactericidal and Bioactive Dental Composites

Aim: Antimicrobial and bioactive restorative materials are needed to develop a bacteria free environment and tight bond with the surrounding tissue, preventing the spread of secondary caries and thus extending the lifetime of dental restorations. The characteristic properties of new dental bioactive and antibacterial composites are presented in this work. The new composites have been microstruc...

متن کامل

Antibacterial effect of morphous (poly-crystalline) and amorphous (glass) nano-bioactive glass 45S5 on Streptococcus mutans

  Objective: Bioactive glass 45S5 is a surface reactive glass-ceramic biomaterial, developed in 1969. BAG 45S5 with particle size of 20-60 nm has the ability of bone regeneration, broad spectrum antibacterial effect, repairs and replaces diseased or damaged bone. The aim of this study was to evaluate the antibacterial activity and determine MIC and MBC values of nano-BAG45S5 on Streptococcus mu...

متن کامل

Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2002